3.123 \(\int \sqrt{d+c^2 d x^2} (a+b \sinh ^{-1}(c x)) \, dx\)

Optimal. Leaf size=111 \[ \frac{1}{2} x \sqrt{c^2 d x^2+d} \left (a+b \sinh ^{-1}(c x)\right )+\frac{\sqrt{c^2 d x^2+d} \left (a+b \sinh ^{-1}(c x)\right )^2}{4 b c \sqrt{c^2 x^2+1}}-\frac{b c x^2 \sqrt{c^2 d x^2+d}}{4 \sqrt{c^2 x^2+1}} \]

[Out]

-(b*c*x^2*Sqrt[d + c^2*d*x^2])/(4*Sqrt[1 + c^2*x^2]) + (x*Sqrt[d + c^2*d*x^2]*(a + b*ArcSinh[c*x]))/2 + (Sqrt[
d + c^2*d*x^2]*(a + b*ArcSinh[c*x])^2)/(4*b*c*Sqrt[1 + c^2*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.0611233, antiderivative size = 111, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.13, Rules used = {5682, 5675, 30} \[ \frac{1}{2} x \sqrt{c^2 d x^2+d} \left (a+b \sinh ^{-1}(c x)\right )+\frac{\sqrt{c^2 d x^2+d} \left (a+b \sinh ^{-1}(c x)\right )^2}{4 b c \sqrt{c^2 x^2+1}}-\frac{b c x^2 \sqrt{c^2 d x^2+d}}{4 \sqrt{c^2 x^2+1}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[d + c^2*d*x^2]*(a + b*ArcSinh[c*x]),x]

[Out]

-(b*c*x^2*Sqrt[d + c^2*d*x^2])/(4*Sqrt[1 + c^2*x^2]) + (x*Sqrt[d + c^2*d*x^2]*(a + b*ArcSinh[c*x]))/2 + (Sqrt[
d + c^2*d*x^2]*(a + b*ArcSinh[c*x])^2)/(4*b*c*Sqrt[1 + c^2*x^2])

Rule 5682

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(x*Sqrt[d + e*x^2]*
(a + b*ArcSinh[c*x])^n)/2, x] + (Dist[Sqrt[d + e*x^2]/(2*Sqrt[1 + c^2*x^2]), Int[(a + b*ArcSinh[c*x])^n/Sqrt[1
 + c^2*x^2], x], x] - Dist[(b*c*n*Sqrt[d + e*x^2])/(2*Sqrt[1 + c^2*x^2]), Int[x*(a + b*ArcSinh[c*x])^(n - 1),
x], x]) /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && GtQ[n, 0]

Rule 5675

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(a + b*ArcSinh[c*x]
)^(n + 1)/(b*c*Sqrt[d]*(n + 1)), x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[e, c^2*d] && GtQ[d, 0] && NeQ[n, -1
]

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rubi steps

\begin{align*} \int \sqrt{d+c^2 d x^2} \left (a+b \sinh ^{-1}(c x)\right ) \, dx &=\frac{1}{2} x \sqrt{d+c^2 d x^2} \left (a+b \sinh ^{-1}(c x)\right )+\frac{\sqrt{d+c^2 d x^2} \int \frac{a+b \sinh ^{-1}(c x)}{\sqrt{1+c^2 x^2}} \, dx}{2 \sqrt{1+c^2 x^2}}-\frac{\left (b c \sqrt{d+c^2 d x^2}\right ) \int x \, dx}{2 \sqrt{1+c^2 x^2}}\\ &=-\frac{b c x^2 \sqrt{d+c^2 d x^2}}{4 \sqrt{1+c^2 x^2}}+\frac{1}{2} x \sqrt{d+c^2 d x^2} \left (a+b \sinh ^{-1}(c x)\right )+\frac{\sqrt{d+c^2 d x^2} \left (a+b \sinh ^{-1}(c x)\right )^2}{4 b c \sqrt{1+c^2 x^2}}\\ \end{align*}

Mathematica [A]  time = 0.440367, size = 120, normalized size = 1.08 \[ \frac{1}{8} \left (4 a x \sqrt{c^2 d x^2+d}+\frac{4 a \sqrt{d} \log \left (\sqrt{d} \sqrt{c^2 d x^2+d}+c d x\right )}{c}+\frac{b \sqrt{c^2 d x^2+d} \left (2 \sinh ^{-1}(c x) \left (\sinh ^{-1}(c x)+\sinh \left (2 \sinh ^{-1}(c x)\right )\right )-\cosh \left (2 \sinh ^{-1}(c x)\right )\right )}{c \sqrt{c^2 x^2+1}}\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[d + c^2*d*x^2]*(a + b*ArcSinh[c*x]),x]

[Out]

(4*a*x*Sqrt[d + c^2*d*x^2] + (4*a*Sqrt[d]*Log[c*d*x + Sqrt[d]*Sqrt[d + c^2*d*x^2]])/c + (b*Sqrt[d + c^2*d*x^2]
*(-Cosh[2*ArcSinh[c*x]] + 2*ArcSinh[c*x]*(ArcSinh[c*x] + Sinh[2*ArcSinh[c*x]])))/(c*Sqrt[1 + c^2*x^2]))/8

________________________________________________________________________________________

Maple [B]  time = 0.091, size = 222, normalized size = 2. \begin{align*}{\frac{ax}{2}\sqrt{{c}^{2}d{x}^{2}+d}}+{\frac{ad}{2}\ln \left ({{c}^{2}dx{\frac{1}{\sqrt{{c}^{2}d}}}}+\sqrt{{c}^{2}d{x}^{2}+d} \right ){\frac{1}{\sqrt{{c}^{2}d}}}}+{\frac{b \left ({\it Arcsinh} \left ( cx \right ) \right ) ^{2}}{4\,c}\sqrt{d \left ({c}^{2}{x}^{2}+1 \right ) }{\frac{1}{\sqrt{{c}^{2}{x}^{2}+1}}}}+{\frac{b{c}^{2}{\it Arcsinh} \left ( cx \right ){x}^{3}}{2\,{c}^{2}{x}^{2}+2}\sqrt{d \left ({c}^{2}{x}^{2}+1 \right ) }}-{\frac{bc{x}^{2}}{4}\sqrt{d \left ({c}^{2}{x}^{2}+1 \right ) }{\frac{1}{\sqrt{{c}^{2}{x}^{2}+1}}}}+{\frac{b{\it Arcsinh} \left ( cx \right ) x}{2\,{c}^{2}{x}^{2}+2}\sqrt{d \left ({c}^{2}{x}^{2}+1 \right ) }}-{\frac{b}{8\,c}\sqrt{d \left ({c}^{2}{x}^{2}+1 \right ) }{\frac{1}{\sqrt{{c}^{2}{x}^{2}+1}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*arcsinh(c*x))*(c^2*d*x^2+d)^(1/2),x)

[Out]

1/2*a*x*(c^2*d*x^2+d)^(1/2)+1/2*a*d*ln(x*c^2*d/(c^2*d)^(1/2)+(c^2*d*x^2+d)^(1/2))/(c^2*d)^(1/2)+1/4*b*(d*(c^2*
x^2+1))^(1/2)/(c^2*x^2+1)^(1/2)/c*arcsinh(c*x)^2+1/2*b*(d*(c^2*x^2+1))^(1/2)*c^2/(c^2*x^2+1)*arcsinh(c*x)*x^3-
1/4*b*(d*(c^2*x^2+1))^(1/2)*c/(c^2*x^2+1)^(1/2)*x^2+1/2*b*(d*(c^2*x^2+1))^(1/2)/(c^2*x^2+1)*arcsinh(c*x)*x-1/8
*b*(d*(c^2*x^2+1))^(1/2)/c/(c^2*x^2+1)^(1/2)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsinh(c*x))*(c^2*d*x^2+d)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\sqrt{c^{2} d x^{2} + d}{\left (b \operatorname{arsinh}\left (c x\right ) + a\right )}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsinh(c*x))*(c^2*d*x^2+d)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(c^2*d*x^2 + d)*(b*arcsinh(c*x) + a), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{d \left (c^{2} x^{2} + 1\right )} \left (a + b \operatorname{asinh}{\left (c x \right )}\right )\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*asinh(c*x))*(c**2*d*x**2+d)**(1/2),x)

[Out]

Integral(sqrt(d*(c**2*x**2 + 1))*(a + b*asinh(c*x)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{c^{2} d x^{2} + d}{\left (b \operatorname{arsinh}\left (c x\right ) + a\right )}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsinh(c*x))*(c^2*d*x^2+d)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(c^2*d*x^2 + d)*(b*arcsinh(c*x) + a), x)